Stretch-induced functional disorder of axonal transport in the cultured rat cortex neuron

نویسندگان

  • Shigeru Aomura
  • Hiromichi Nakadate
  • Yuma Kaneko
  • Akiyoshi Nishimura
  • Remy Willinger
چکیده

Background: Diffuse axonal injury (DAI) is a one of the main causes of traumatic brain injury and caused by the impulsive stretching of neuronal axons resulting from rapid deformation of a brain. DAI is characterized by a gradual swelling of the axons which is formed by the accumulation of cellular organelles and proteins, and the swelling is the morphological hallmark of DAI pathology. In recent years, the details of the stress and strain of the whole damaged brain are becoming clear with the rapid development of the computational mechanics and finite element (FE) head models are able to give better prediction to the brain injury and to evaluate the protective safety methods with more detailed neuronal tolerance criteria. In this study, axonal injury induced by precisely controlled impulsive strain and strain rate was evaluated and the tolerance criteria for the functional disorder for each dysfunction and disruption level of axonal transport was obtained by observation of β-amyloid precursor protein (β-APP) in cultured rat cortex neuron. Methods: The uniaxial stretching device which could give various combinations of strains and strain rates to neurons was developed. The various loading conditions for neurons were verified by comparing the experimental displacement history of the substrate taken by microscopy with the FE strain distribution analysis of culturing substrate. The primary rat cortex neurons were stretched by different combinations of strains and strain rates and β-APP was immunostained at 3h after loading and observed by fluorescence microscopy. Results: The number of swellings and bulbs formed on axons by β-APP-accumulation after stretching were observed and counted by fluorescent images. The dysfunction of the axonal transport was defined as the rate of neurons that have β-APP-accumulating axonal swellings and disruption of the axonal transport was defined as the rate of neurons that have β-APP-accumulating axonal bulbs, respectively. The degree of the functional disorder of the axonal transport advanced with the increase of strain and strain rate. Conclusions: The mechanical threshold of dysfunction and disruption of axonal transport were the strain with 0.22 and the strain rate with 27 /s. The intervals between swellings on an axon are constant and do not depend on the axonal injury level nor the magnitude of the strain of the axons.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Human chorionic gonadotropin attenuates amyloid-β plaques induced by streptozotocin in the rat brain by affecting cytochrome c-ir neuron density

Objective(s): Amyloid β plaques, in Alzheimer’s disease, are deposits in different areas of the brain such as prefrontal cortex, molecular layer of the cerebellum, and the hippocampal formation. Amyloid β aggregates lead to the release of cytochrome c and finally neuronal cell death in brain tissue. hCG has critical roles in brain development, neuron differentiation, and function. Therefore, we...

متن کامل

بررسی اثر عصاره مغز جنین بر نرون های هسته عصب هیپوگلوس ضایعه دیده در رت (Rat)

Background and purpose: Lesion on neural fiber is a phenomenon which can lead to cell death of the relevant functional neurons through a retrograde degeneration. Ïn order to show the probable effect of existing trophic factors present in immature brain (fetus) in maintaining and existence of mature motor neurons, this study was conducted experimentally on animals. Materials and Methods: Ïn...

متن کامل

Disruption of Dynein/Dynactin Inhibits Axonal Transport in Motor Neurons Causing Late-Onset Progressive Degeneration

To test the hypothesis that inhibition of axonal transport is sufficient to cause motor neuron degeneration such as that observed in amyotrophic lateral sclerosis (ALS), we engineered a targeted disruption of the dynein-dynactin complex in postnatal motor neurons of transgenic mice. Dynamitin overexpression was found to disassemble dynactin, a required activator of cytoplasmic dynein, resulting...

متن کامل

Rabies virus infection and transport in human sensory dorsal root ganglia neurons.

Cultured human sensory neurons are directly susceptible to CVS rabies virus infection and produce virus yields of 10(5) p.f.u./ml; infection can persist for more than 20 days without any sign of c.p.e. The use of a compartmentalized two-chamber culture system, with access to either the cell soma or neuritic extensions, permitted the study of viral retrograde transport, which occurs at between 5...

متن کامل

Harvesting of bone marrow mesenchymal stem cells from live rats and the in vitro differentiation of bone marrow mesenchymal stem cells into neuron-like cells

In the bone marrow, there are certain populations of stem cell sources with the capacity to differentiate into several different types of cells. Ideally, cell transplants would be readily obtainable, easy to expand and bank, and capable of surviving for sufficient periods of time. Bone marrow mesenchymal stem cells (BM-MSCs) possess all of these characteristics. One of the most important benefi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016